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Many practical systems including the slightly damped mechanical systems, even they

are already stable, are required to be controlled, in order to get better performance or

better stability. In this paper, the concept of fractional-order difference feedback that

generalizes the displacement difference feedback, velocity difference feedback and

acceleration difference feedback, is proposed for improving the stability of a sdof

vibration system. It is found that among the various state difference feedbacks, some

fractional-order difference feedbacks including fractional-order integrators and frac-

tional-order differentiators improve the stability of vibration systems best. Fractional-

order integrator/differentiator is a controller with memory for the whole time history,

its implementation is usually more complicated than the classical PID control and

acceleration control. Thus, proper classical controller is suggested for improving

the stability of the vibration system with small damping and small delay. If a

displacement sensor is used, then the optimal form of state difference feedbacks for

enhancing stability is the displacement difference feedback with k40. If an acceleration

sensor is used, then the optimal form of state difference feedbacks for enhancing

stability is the acceleration difference feedback with ko0. Moreover, on the basis of

the principal of stability switch, the admissible feedback gains and delay governing

the asymptotical stability and g-stability are studied in detail, and illustrated with

numerical experiments.

& 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Vibration control is a key problem in many practical systems. Various control schemes can be used to stabilize an
unstable motion [1]. Even for some stable systems such as slightly damped mechanical systems including rotary crane [2]
and flexible link [3], their free vibration decays very slowly, thus a control, say a negative velocity feedback, can be used to
enhance the system stability so that the closed-loop arrives at its steady states more quickly. The velocity sensors, however,
may result in cost, space, and malfunction problems. Measuring velocity from displacement sensors usually introduces
heavy noise and deviation, which have to be removed by using additional filters [4]. To overcome such disadvantages, the
state difference feedback that uses only the difference between the present state xðtÞ and the past state xðt � tÞ, ðt40Þ,
which was originally proposed by Pyragas [5] for controlling chaos and can be implemented easily in applications, will be
useful [2,6]. This feedback method is peculiarly useful, considering exact information about the steady state is usually
unavailable and the control is robust against parameter changes. In [7], it is shown that under certain mild conditions,
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a state difference feedback can always stabilize a system with even number of unstable modes. In addition, on the basis of
stability switches [8], a new criterion is established in [9] for the stabilization problem of unstable vibration systems via
state difference feedback, and an effective and constructive procedure for determining the admissible values of the
feedback gains and the delay is given.

To show the ability in improving system stability of displacement difference feedback, let us consider the vibration
system of single degree of freedom (sdof ) in dimensionless form

€xðtÞ þ 2x_xðtÞ þ xðtÞ ¼ 0 (1)

the models discussed in [2,10–12] fall into this category. The zero solution xðtÞ � 0 is asymptotically stable if x40. Here the
stability of a system is improved, we mean that the real part of the rightmost root(s) of the closed-loop is less than that of
the control plant, namely the rightmost root(s) is shifted in the complex plane from right to left. We consider the cases with
under-damped term, namely 0oxo1, then the characteristic roots read

l1;2 ¼ �x�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
i; ði2 ¼ �1Þ

When a displacement difference feedback u ¼ �kðxðtÞ � xðt � tÞÞ with k40 is performed to the vibration system, the
closed-loop system reads

€xðtÞ þ 2x_xðtÞ þ xðtÞ ¼ �kðxðtÞ � xðt � tÞÞ (2)

For small t40, one has €xðtÞ þ 2x_xðtÞ þ xðtÞ � �kt_xðtÞ, thus the two dominate roots among the infinite number of
characteristic roots become

lc
1;2 � � xþ

kt
2

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� xþ

kt
2

� �2
s

i

Because Reðlc
1;2ÞoReðl1;2Þ, where ReðzÞ stands for the real part of z, thus the stability of the vibration system has been

enhanced if k40, and it has been deteriorated if ko0.
On the other hand, acceleration sensors are actually most widely used for vibration control, because acceleration

sensors measure acceleration easily and accurately [11–16]. Thus, a delayed acceleration feedback, as well as a delayed
velocity feedback measuring from acceleration sensors, can be also used to stabilize unstable motion or to enhance system
stability. In addition, in machine tool dynamics, the displacement difference feedback and the velocity difference feedback
are also called regenerative cutting force and regenerative damping force respectively [17,18]. Chatter instability in
machining process, due to regeneration of surface waviness, has been shown to involve regenerative cutting/damping
forces [19]. This form of instability causes an unacceptable surface finish, along with excessive tool wear or breakage,
thereby limiting the metal removal rate that can be achieved [20]. Enhancement of dynamic stability is very important in
machining dynamics.

Since the pioneering work [21,22] of Bagley and Torvik, who used the 1
2-order derivative or 3

2-order derivative to describe
damping in an immersed plate in a Newtonian fluid and a gas in a fluid respectively, it has found many applications of
fractional calculus [23–26]. Analysis shows that fractional calculus provides better results than classical calculus [23]. In
control theory, the idea of using fractional-order controllers belongs to Oustaloup, who developed the so-called CRONE
controllers. The PIlDm-controller involving an integrator of order l and differentiator of order m was proposed by Podlubny.
A fractional-order controller is more flexible and it provides better control effect and better performance than an integer-
order controller [23]. Because displacement, velocity and acceleration can be considered as the zero-order, first-order and
second-order derivatives of the displacement, it is natural to investigate the control effect of a real-order difference
feedback in the form

u ¼ �kðDaxðtÞ � Daxðt � tÞÞ ða 2 RÞ (3)

where Da stands for fractional-order derivative/integration [23–26]. We call this controller fractional-order difference

feedback.
With such a fractional-order controller, the first question comes:
�
 For what values of a, the fractional-order controllers with a small delay, including displacement difference feedback,
velocity difference feedback, and acceleration difference feedback, improve the stability of the vibration system best?

For t40 that is not small, the approximation €xðtÞ þ 2x_xðtÞ þ xðtÞ � �kt_xðtÞ is not guaranteed, so it is not clear whether such
a feedback control improves the system stability or not. This is the case for the fractional-order controller given in Eq. (3).
Thus, there comes the second question:
�
 How to find a region D in the first quadratic of ðk;a; tÞ-coordinate such that the system stability is improved, namely the
corresponding conjugate rightmost characteristic roots have smaller negative real parts for all ðk;a; tÞ 2 D?
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Or more generally, we need to know
�
 How to find a region D in the first quadratic of ðk;a; tÞ-coordinate such that the system stability is improved to
g-stability, namely the corresponding conjugate rightmost characteristic roots have real part less than a given negative
number �g for all ðk;a; tÞ 2 D?

The primary objective of this paper is to present an answer to the three problems. We begin in Section 2 with a brief
introduction of the fractional difference feedback. Next in Section 3, a comparison study of the state difference feedback in
different forms is made. Then in Section 4, on the base of stability switches, it is shown the parameter region for improving
the stability of the system is governed by two branches associated with k and t, and this parameter region is given
analytically and explicitly. In Section 5, the problem of improving stability to g-stability is investigated, a method is
proposed for determining the admissible delay, and it is illustrated with a numerical experiment. Finally, some conclusions
are drawn in Section 6.

2. A fractional-order state difference feedback

The fractional-order difference feedback defined by

u ¼ �kðDaxðtÞ � Daxðt � tÞÞ ða 2 RÞ (4)

involves fractional-order derivative ða40Þ or fractional-order integration ðao0Þ, which have different definitions. The most
popular definitions are Riemann–Liouville definition, Grünwald–Letnikov definition and Caputo definition [23]. Usually,
the Riemann–Liouville definition is widely used for problem description because it requires less constraints on the state
variables; while the Grünwald–Letnikov definition is preferable for numerical computation because it is a summation of
state differences; and the Caputo definition is preferable for control problems because it admits more operational rules that
are analog to the ones for classical calculus than the other definitions. To begin with the comparison study, it is necessary
to make clear the meaning of real-order integration and real-order differentiation. Here in this paper, we use Caputo’s
definition of real-order derivative/integration.

Let a 2 R, and m ¼ ½a� þ 1, where ½a� stands for the greatest integer that is not larger than a, then

DaxðtÞ ¼
1

Gða�mÞ

Z t

0

xðmÞðtÞ
ðt � tÞaþ1�m

dt (5)

where GðzÞ is Euler gamma function, defined by

GðzÞ ¼
Z 1

0
e�ttz�1 dt ðReðzÞ40Þ

and xðmÞðtÞ is the classical derivative/integration, defined by

xðmÞðtÞ ¼

dmxðtÞ

dtm ; m 2 N

xðtÞ; m ¼ 0

xð�nÞðtÞ ¼
1

GðnÞ
R t

0
xðtÞ

ðt � tÞ1�n
dt; m ¼ �n; n 2 N

8>>>>><
>>>>>:

One of the important features of Caputo’s fractional-order derivative is the following formula for its Laplace transformation

LðDaxðtÞÞ ¼ saLðxðtÞÞ �
Xm�1

i¼1

sa�i�1xðiÞð0Þ (6)

With zero initial conditions, one has simply LðDaxðtÞÞ ¼ saLðxðtÞÞ.

3. The optimal order of the fractional state difference feedbacks for improving stability

To make the exposition as simple as possible, the sdof vibration system is addressed in this paper. Under the fractional-
order difference feedback (4), the closed-loop reads

€xðtÞ þ 2x_xðtÞ þ xðtÞ ¼ �kðDaxðtÞ � Daxðt � tÞÞ (7)

Using Laplace transformation one finds the characteristic function of the closed-loop as follows:

pðsÞ ¼ s2 þ 2xsþ 1þ ksað1� e�stÞ (8)

Let s ¼ l� x, one has

f ðlÞ ¼ pðl� xÞ ¼ l2
� x2

þ 1þ kðl� xÞað1� e�ðl�xÞtÞ (9)
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Then the stability is improved if the rightmost roots of f ðlÞ have real part less than 0. Obviously, when t ¼ 0, the two roots

of f ðlÞ ¼ 0 stay on the imaginary axis with l ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
i. It is required to figure out the sign of

L ¼ Re
dl
dt

� �
t¼0; l¼�

ffiffiffiffiffiffiffiffiffiffi
1�x2

p
i

If L40, then f ðlÞ admits one new pair conjugate roots with positive real part, and if Lo0, then f ðlÞ admits one new pair of
conjugate roots with negative real part, as t increases from 0. In the latter case, with a small delay in the control path, the
stability of the sdof vibration system is improved. The smaller the L is, the better the stability of the closed-loop is. When
x41=

ffiffiffi
2
p

, a state feedback may not be necessary for enhancing the system stability, because the damping coefficient may
be large enough for system stability. Thus, the case of x 2 ð0;1=

ffiffiffi
2
p
Þ will be addressed below.

It is easy to know that L ¼ �k=2 if a ¼ 0, and L ¼ kð1� 4x2
Þ=2 if a ¼ 2. Thus for k40, the displacement difference

feedback improves the stability of the vibration system, but the acceleration difference feedback does not. Hence, the
displacement difference feedback is better than the acceleration difference feedback, if k40. When ko0, the acceleration
difference feedback improves the stability of the vibration system, but the displacement difference feedback does not.
Hence, the acceleration difference feedback is better than the displacement difference feedback, if ko0.

In general, straightforward differentiation on f ðlÞ ¼ 0 with respect to t gives

L ¼ �
kD

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
where

D ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
cos a arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
x

� ap

0
@

1
Aþ x sin a arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
x

� ap

0
@

1
A

¼ sin ð1þ aÞ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
x

� ap

0
@

1
A

It follows that

L ¼ �

k sin ð1þ aÞ arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
x

� ap

0
@

1
A

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q (10)

Moreover, let

aþ
j
¼

def
arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
x

�
p
2
� 2jp

p� arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
x

ðj ¼ 0;�1;�2; . . .Þ (11)

a�l ¼
def

arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
x

þ
p
2
� 2lp

p� arctan

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
x

ðl ¼ 0;�1;�2; . . .Þ (12)

then

min
a2R

L ¼

�
k

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q if a ¼ aþ
j
; k40

�
jkj

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q if a ¼ a�
l
; ko0

8>>>>>><
>>>>>>:

(13)

That is to say, for a fixed x 2 ð0;1Þ and a small t, the fractional-order difference feedback (3) improves the stability of the

vibration system best if k40 and a ¼ aþ
j

, or ko0 and a ¼ a�
l

. A general view on the a that minimizes L is given in Fig. 1,

and some values of aj that minimize L for fixed x is given in Table 1.

In summary, the following theorem answers our first question.
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Fig. 1. The plot of D vs. a for (a) x ¼ 0:1; (b) x ¼ 0:3; (c) x ¼ 0:5; (d) x ¼ 0:8.

Table 1

Some values of aþ
j

, a�
l

that minimize L defined in Eq. (10).

x k40 ko0

aþ1 aþ0 aþ
�1

a�1 a�0 a�
�1

0.05 �3.907 �0.0309 3.846 �1.969 1.907 5.784

0.1 �3.820 �0.0599 3.700 �1.940 1.820 5.580

0.3 �3.513 �0.1624 3.188 �1.838 1.513 4.863

0.5 �3.250 �0.2500 2.750 �1.750 1.250 4.250

0.8 �2.886 �0.3712 2.144 �1.629 0.8864 3.402

Z.H. Wang, Y.G. Zheng / Journal of Sound and Vibration 326 (2009) 476–488480
Theorem 1. Among the real-order feedback controllers �kðDaxðtÞ � Daxðt � tÞÞ with small t40, including the classical integral

feedback, displacement feedback, velocity feedback and acceleration feedback, the fractional-order a integrator/differentiator

with a ¼ aþ
j

or a ¼ a�
l

improves the stability of the sdof vibration system best for k40 or ko0 respectively.

Remark 1. From Eqs. (11) and (12), it can be seen that for small x40, aþ0 � 0 and a�0 � 2. Considering the fact that the
realization of a fractional-order controller is usually more difficult than a classical controller, the displacement difference
feedback is preferable if k40, and the acceleration difference feedback is preferable if ko0, in enhancing the stability of the
vibration system.

4. The region D in ðk; tÞ-plane for improving stability

From the above discussion, for x 2 ð0;1=
ffiffiffi
2
p
Þ, the stability of the vibration system should be improved by using the

displacement difference feedback with k40 or by using the acceleration difference feedback with ko0. In this section, the
second question proposed in Introduction, namely finding a region D in ðk; tÞ-plane for improving stability of the vibration
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system with time-invariant t40, will be solved for k40, by means of stability switches [9]. When the delay is time-variant,
the stability analysis of time-delay system is usually carried out by using LMI method, see for example [27,28].

Under the displacement difference feedback, the closed-loop is

€xðtÞ þ 2x_xðtÞ þ xðtÞ ¼ �kðxðtÞ � xðt � tÞÞ (14)

and its characteristic function reads pðsÞ ¼ s2 þ 2xsþ 1þ kð1� e�stÞ, and consequently

f ðlÞ ¼ pðl� xÞ ¼ l2
� x2

þ 1þ kð1� e�ðl�xÞtÞ

Straightforward computation gives

Re
dl
dk

� �
k¼0
¼ �

sinð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
tÞ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q o0

Here

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
top is assumed true (the reason will be given in Remark 2 at the end of this section). Together with

L ¼ �k=2o0, it means that as t and k increases from 0, the conjugate rightmost roots of f ðlÞ have real part less than 0, or
equivalently, the conjugate rightmost roots of pðsÞ have real part less than �x. Thus, the system stability is improved if t40
and k40 are small enough. Because the root l of f ðlÞ ¼ 0 depends continuously on t40 and k40, the two parameters will
arrive at the boundary between stability and instability if f ð�ioÞ ¼ 0 has a solution o � 0.

Now, separating the real and imaginary parts of f ðioÞ ¼ 0 gives

�o2 � x2
þ 1þ k ð1� etx cosðtoÞÞ ¼ 0

ketx sinðtoÞ ¼ 0

(

Thus, ðk; tÞ and o must satisfy

ot ¼ np; �o2 � x2
þ 1þ kð1� ð�1ÞnetxÞ ¼ 0

for n ¼ 0;1;2; . . . : Let

gðk; t;nÞ ¼ � np
t

� �2
� x2

þ 1þ k� ð�1Þnketx (15)

Obviously, gðk; t;0Þ reads

gðk; t;0Þ ¼ �x2
þ 1þ k� ketx

It has exactly one root k0 ¼ ð1� x2
Þ=ð1� etxÞ 2 Rþ for any fixed t40, and it has also exactly one root t0 ¼ ðlnððkþ 1� x2

Þ=kÞÞ=

x40 because for fixed k40, gðk; t;0Þ decreases monotonously with t and satisfies

gðk;0;0Þ ¼ �x2
þ 140; lim

t!þ1
gðk; t;0Þ ¼ �1

When n ¼ 2m ðm ¼ 1;2; . . .Þ, one has

gðk; t;2mÞ ¼ �
2mp
t

� �2

� x2
þ 1þ k� ketx

With a fixed k 2 Rþ, let

T2m ¼
3

x
W0

2

3
x

ffiffiffiffiffiffiffiffiffiffiffiffiffi
m2p2

kx
3

s0
@

1
A40

where W0ðxÞ, which can be calculated directly by using the calculator in the popular softwares such as MAPLE, is the
principal branch of Lambert W function, defined as the solution w ¼ wðxÞ of wew ¼ x. Then differentiating gðk; t;2mÞ with
respect to t gives

d

dt
gðk; t;2mÞ ¼ 8

m2p2

t3
� kxext

40; t 2 ð0; T2mÞ

o0; t 2 ðT2m;þ1Þ

(

It follows that gðk; t;2mÞ has exactly two positive roots if gðk; T2m;2mÞ40, it has a repeated root if gðk; T2m;2mÞ ¼ 0, and it
has no real root if gðk; T2m;2mÞo0, because

lim
t!0

gðk; t;2mÞ ¼ �1; lim
t!1

gðk; t;2mÞ ¼ �1

In the first two cases, gðk; t;2mÞ ¼ 0 has no more than two solutions, the smaller one is denoted by t2m. Because
gðk; t;2 ðmþ 1ÞÞogðk; t;2mÞ, so t2 is the smallest one among t2m ðm ¼ 1;2; . . .Þ for given k.
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If n ¼ 2mþ 1 ðm ¼ 0;1;2; . . .Þ, one has

gðk; t;2mþ 1Þ ¼ �
ð2mþ 1Þp

t

� �2

� x2
þ 1þ kþ ketx

And gðk; t;2mþ 1Þ ¼ 0 has a unique solution denoted by t2mþ1 for any given k 2 Rþ, since gðk; t;2mþ 1Þ increases
monotonously with t, and

lim
t!þ0

gðk; t;2mþ 1Þ ¼ �1; lim
t!þ1

gðk; t;2mþ 1Þ ¼ þ1

Moreover, one has gðk; t;2ðmþ 1Þ þ 1Þogðk; t;2mþ 1Þ, so t1 is the smallest one among t2mþ1 ðm ¼ 0;1; . . .Þ for given k.
From the definitions of gðk; t;2Þ and gðk; t;1Þ, one has gðk; t;2Þogðk; t;1Þ. So gðk; t2;1Þ4gðk; t2;2Þ ¼ 0, if t2 does exist.

Because gðk; t;1Þ is increasing in t40, one has t24t1. In addition, t1 depends decreasingly on k40, because

dtðkÞ
dk
¼ �

t3ð1þ extÞ

2p2 þ kxt3ext
o0

Therefore for any given k 2 Rþ, one finds the delay bound t	 from the roots of gðk; t;0Þ, gðk; t;1Þ, namely

t	 ¼minft0; t1g ¼ min
lnððkþ 1� x2

Þ=kÞ

x
; t1

( )
(16)

Alternatively, one can also find the bound k	 of feedback gain for fixed t. In summary, one has

Theorem 2. Under the negative state difference feedback �kðxðtÞ � xðt � tÞÞ, ðk40Þ, the region D in ðk; tÞ-plane that improves

the stability of the vibration system is given by

D ¼ fðk; tÞjk40; t40; gðk; t;0Þ40; gðk; t;1Þo0g

Remark 2. From gðk; t;1Þ ¼ 0, it is easy to know that

lim
k!þ0

tðkÞ ¼ p=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
; lim

k!þ1
tðkÞ ¼ 0

Hence, in order to improve the stability of the vibration system, one should have top=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� x2

q
.

Example 1. To demonstrate the main result obtained in Section 2, let us find out the region D in ðk; tÞ-plane, under the state
difference feedback �kðxðtÞ � xðt � tÞÞ, ðk40Þ, for €xðtÞ þ 0:12_xðtÞ þ xðtÞ ¼ 0. The controlled system (2) with x ¼ 0:06 is

€xðtÞ þ 0:12_xðtÞ þ xðtÞ ¼ �kðxðtÞ � xðt � tÞÞ (17)

and the corresponding gðk; t;0Þ, gðk; t;1Þ are given by

gðk; t;0Þ ¼ 0:9964þ k� ke0:06t

gðk; t;1Þ ¼ �p
2

t2
þ 0:9964þ kþ ke0:06t

The region D, shown in Fig. 2(a), is a small region in ðk; tÞ-plane. Figs. 2(b)–(d) show three spacial cases that confirm the
main results of this paper, where the time histories are calculated by using MATLAB code dde23 with AbsTol 1e-8.

For the case of acceleration difference feedback, a similar procedure can be made for determining the region D. In this
case, however, one should note that the feedback gain k must satisfy jkjo1. If jkj41, then the closed-loop must be unstable
for any given t40, and if jkj ¼ 1, then the stability of the vibration system is not guaranteed by the fact ‘‘all the
characteristic roots have negative real part’’, because the characteristic roots may have an accumulation point on the
imaginary axis.

5. The general case: g-stability

To achieve a better stability, the real part of the conjugate rightmost roots should be as small as possible. Then, a similar
problem for the displacement difference feedback can be described below. For a given number g 2 ðx;1Þ, how to find the
admissible ðk; tÞ such that the closed-loop admits a g-stability, namely all the roots of pðsÞ ¼ s2 þ 2xsþ 1þ kð1� e�stÞ
satisfying

ReðsÞo� g? (18)

To solve this problem, as done above, let

f ðlÞ ¼ pðl� gÞ ¼ l2
þ 2ðx� gÞlþ g2 � 2xgþ 1þ kð1� egte�ltÞ (19)

Here, f ðlÞ is a quasi-polynomial with delay-dependent parameters. It is required to find the admissible gains and delays
such that the real parts of all the roots of (19) are non-positive. For simplicity, the delay effect on the stability will be
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Fig. 2. (a) The region D in ðk; tÞ-plane that improves the stability of the vibration system for x ¼ 0:06, where the curve A is the plot of gðk; t;0Þ ¼ 0, and the

curve B is the plot of gðk; t;1Þ ¼ 0. (b) The time history of the uncontrolled system. (c) The time history under control with ðk; tÞ ¼ ð8;0:5Þ 2 D. (d) The time

history under control with ðk; tÞ ¼ ð9;1ÞeD. All start from xðyÞ ¼ 0:1, _xðyÞ ¼ 0, ð8y 2 ½�t;0�Þ.
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focused on. Firstly, let l ¼ 0, then one has

t ¼ 1

g ln
g2 � 2xgþ 1þ k

k

Then, let l ¼ �io with o40, and let the imaginary and real part of (19) equal to zero, then

�o2 þ g2 � 2xgþ 1þ k� kegt cosðotÞ ¼ 0

2ox� 2ogþ kegt sinðotÞ ¼ 0

(
(20)

This is equivalent to the following equations:

FðoÞ:¼o4 þ Bo2 þ C � k2e2gt ¼ 0 (21)

and

sinðotÞ ¼ 2oð�xþ gÞðkegtÞ�1

cosðotÞ ¼ ð�o2 þ g2 � 2xgþ 1þ kÞðkegtÞ�1

(
(22)

where

B ¼ 2g2 � 2k� 2� 4xgþ 4x2
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C ¼ k2
þ ð�4xgþ 2g2 þ 2Þkþ 1þ 2g2 � 4xg� 4g3xþ g4 þ 4x2g2

The number of real roots of the fourth-order polynomial FðoÞ depends on the parameters in three cases. Let

oþðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2ð�Bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4ðC � k2e2gtÞ

q
Þ

r

o�ðtÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
2ð�B�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2 � 4ðC � k2e2gtÞ

q
Þ

r

then, one has
(i)
 If B2 � 4ðC � k2e2gtÞo0, or B40 and C � k2e2gt40, then none of the roots are real.

(ii)
 If C � k2e2gto0, namely,

t4 1

2g
ln

C

k2
¼

1

g
ln
g2 � 2xgþ 1þ k

k

then FðoÞ has two real roots �oþ.

(iii)
 If B2 � 4ðC � k2e2gtÞ � 0, Bo0 and C � k2e2gt � 0, namely, Bo0 and

1

2g
ln

4C � B2

4k2

 t 
 1

2g
ln

C

k2

then the four roots are all real �oþ;�o�. In particular, if

t ¼ 1

2g ln
C

k2

then o� ¼ 0, and if

t ¼ 1

2g ln
4C � B2

4k2

then o� ¼ oþ.
Once a simple positive root o ¼ oðtÞ of FðoÞ ¼ 0 is in hand, the critical values of delay t is determined from

t ¼ 1

o 2npþ arccot
�o2 þ g2 � 2xgþ 1þ k

2oð�xþ gÞ

 !
; n ¼ 0;1; . . . (23)

because g� x40. Let gðn;oÞ be the right hand term of Eq. (23), then gð0;oÞogð1;oÞogð2;oÞo � � �, and limo!þ1 gðn;oÞ ¼ 0.
Because limt!þ1oþðtÞ ¼ �1, one has limt!þ1 gðn;oÞ ¼ 0, thus t4gðn;oðtÞÞ, for sufficient large t.

For a given k40, assuming ðo	ðt	Þ; t	Þ is a simple positive solution of (21) and (23) for some n, then (19) has a pair of
simple conjugate pure imaginary roots lþðt	Þ ¼ io	ðt	Þ and l�ðt	Þ ¼ �io	ðt	Þ at t ¼ t	. Let

Lt	 ¼ sign Re
dl
dt

� �
l¼�io	ðt	Þ

¼ signfRg

where

R ¼ o	4
þ ð2x2

� xg� 1� kÞo	2
� g4 þ 3g3x� ðkþ 2x2

þ 1Þg2 þ ð1þ kÞxg (24)

then, f ðlÞ admits one new pair of conjugate characteristic roots with positive real parts if Lt	 ¼ 140, and it admits one new
pair of conjugate characteristic roots with negative real parts if Lt	 ¼ �1o0.

For Case (i), the x-stability is kept unchanged for all given t40. It means that in this case the stability cannot be
improved to g-stability with g4x.

In Case (ii), the critical delay values can be determined from

t ¼ gðn;oþðtÞÞ ðn ¼ 0;1;2; . . .Þ (25)

While in the case of (iii), the critical delay values are determined from

t ¼ gðn;oþðtÞÞ; t ¼ gðn;o�ðtÞÞ ðn ¼ 0;1;2; . . .Þ (26)

At

t ¼ 1

2g
ln

C

k2
¼

1

g
ln
g2 � 2xgþ 1þ k

k
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f ðlÞ has a repeated root o� ¼ 0. As t passes through

1

2g ln
C

k2

a stability switch usually occurs.
Now, for given parameters, the critical delay values in Cases (ii) and (iii) can be found out numerically easily.

Consequently, the delay interval that improves the stability of the vibration system to g-stability can be obtained. The main
results could find applications in some fields including machining tool dynamics.

Example 2. With x ¼ 0:02, k ¼ 2 and g ¼ 0:8, one has

f ðlÞ ¼ l2
� 1:56lþ 3:608� 2e0:8te�lt

FðoÞ ¼ o4 � 4:7824o2 þ 13:0177� 4e1:6t

RðoÞ ¼ o4 � 3:0152o2 � 2:2514

It is easy to know that FðoÞ has real roots only if t40:3760. It means that the stability of the vibration system cannot be
improved to g-stability for all t 2 ½0;0:3760�. In this case, f ðlÞ has a pair of conjugate roots with positive real part.
When 0:3760oto0:7375, FðoÞ has two pairs of real roots �oþ, �o�, and the unique critical delay value is t0� ¼ 0:5329,
determined from t ¼ gð0;o�ðtÞÞ. Thus, a stability switch cannot occur till t ¼ 0:5329.

When t passes though 0.5329, f ðlÞ decreases a pair of conjugate roots with positive real part, because Lt0�
¼ �1 as seen

in Fig. 3(a). Thus, the number of roots with non-negative real parts for f ðlÞ is reduced to 0 as t passes though 0.5329,
namely a stability switch occurs at t ¼ 0:5329. The number of roots with non-negative real parts for f ðlÞ is kept to be 0 till
t ¼ 0:7375. At t ¼ 0:7375, o� ¼ 0.

If t40:7375, FðoÞ has a pair of real roots �oþ, and the minimal critical delay value is t0þ ¼ 0:8736, determined from
t ¼ gð0;oþðtÞÞ. As seen in Fig. 3(b), when t passes though 0.8736, f ðlÞ increases a pair of conjugate roots with positive real
part, because Lt0þ

¼ 1. The stability of f ðlÞ cannot be changed till t passes though 0.8736.
With the Nyquist plot of f ðioÞ=ð1þ ioÞ2, one can easily check whether all the roots of f ðlÞ have negative real parts or

not. As proved in [29], if the Nyquist plot does not enclose the origin of the complex plane, then all the roots of f ðlÞ have
negative real parts. From Fig. 4 one can see that all the roots of f ðlÞ have negative real parts for all t 2 ð0:5329;0:7375Þ, and
f ðlÞ has one pair of conjugate roots with positive real parts for t 2 ð0:7375;0:8736Þ. As a result, the stability of the vibration
system cannot be improved to g-stability with g ¼ 0:8 for teð0:5329;0:7375Þ, but it can be improved greatly to g-stability
with g ¼ 0:8 for t 2 ð0:5329;0:7375Þ, by using the displacement difference feedback.

Fig. 5 gives the plot of the real part of the rightmost roots with respect to t for x ¼ 0:02 and k ¼ 2, by following the
method proposed in [30]. It shows that the controlled vibration system is stable for t 2 ð0;1:4252Þ. The real part of the
rightmost roots takes its minimal value �1:4793 at about t ¼ 0:63; it means that the system arrives at its equilibrium most
rapidly at about t ¼ 0:63. Thus, the time delay should be taken around 0.63, if the problem of improving stability is
addressed.
Fig. 3. (a) The first three branches for determining the critical delay values. t ¼ gð0;oðtÞÞ gives t0� ¼ 0:5329, t0þ ¼ 0:8736. (b) The sign of R defined in

Eq. (24), for x ¼ 0:02, k ¼ 2 and g ¼ 0:8. The solid curve is the plot of RðoþÞ vs. t, and the dashed curve is the plot of Rðo�Þ vs. t. At t ¼ 0:4960, one has

RðoþÞ ¼ 0, and at t ¼ 0:8805, one has Rðo�Þ ¼ 0.
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Fig. 4. The Nyquist plot of f ðioÞ=ð1þ ioÞ2, which checks the stability of f ðlÞ, for Eq. (19). (a) t ¼ 0:4; (b) t ¼ 0:6; (c) t ¼ 0:7; (d) t ¼ 0:8. As o!�1, the

limit point is ð1;0Þ for all the cases.

Fig. 5. The real part of the rightmost roots with respect to t in t 2 ð0;1:5Þ, for x ¼ 0:02 and k ¼ 2.

Z.H. Wang, Y.G. Zheng / Journal of Sound and Vibration 326 (2009) 476–488486
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6. Concluding remarks

In this paper, the concept of fractional-order difference feedback is proposed for improving the stability of vibration
systems. The fractional-order offers us another flexible way in choosing a controller for improving stability of a sdof
vibration system. It is found that some fractional-order difference integrators/differentiators improve the stability best.
This observation is in agreement with the well-recognized believe: fractional calculus leads to better results than classical
calculus.

Because fractional-order controllers involve more complexity in implementation than integer-order controller, and
because the optimal fractional-order is close to 0 or 2, the classical displacement difference feedback and the acceleration
difference feedback are preferable in applications. If a displacement sensor is used, then the optimal form of state
difference feedbacks for enhancing stability of the vibration system with small damping and small delay is the
displacement difference feedback with k40. If a acceleration sensor is used, then the optimal form of state difference
feedbacks for enhancing stability is the acceleration difference feedback with ko0.

On the basis of stability switches, a method is proposed for determining the admissible feedback gains and delay for
improving the stability. For the general problem of improving the stability to g-stability, it is required to determine whether
all the roots of a quasi-polynomial have negative real parts or not. The peculiarity of this quasi-polynomial is the
dependence of the coefficients on the unknown delay, the procedure for finding the admissible delay is not straightforward.
The second numerical example shows that the stability of a slightly damped vibration system can be improved greatly via
displacement difference feedback, by adjusting the delay only.

The regenerative chatter instability in machining process, caused by regenerative cutting force or/and regenerative
damping force, is unacceptable, and enhancement of dynamic stability must be achieved. Thus, it is expected to find
applications of the main results of this paper in machining dynamics.
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